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Abstract-A singular stress field develops at the corner where an interface between two bonded
materials intersects a traction-free edge. Depending upon the geometry of the interface-corner. the
free-edge stress singularity may be of the form HI" '. where r is the radial distance from the corner.
i.-I is the order of the stress singularity and H is the intensity of the singularity. The intensity H
of the singularity developed at the free-edge of a long biomaterial strip subjected to uniform tension
is evaluated for various combinations of materials. using the finite element method. The role of the
intensity H in controlling the initial growth of an interfacial edge crack embedded within the
singularity zone is examined. The implications of the results for the initiation of free-edge cracks
are discussed. (. 1997 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The initiation and growth of cracks at the interface between two different elastic materials
constitute major technical problems in the design of many multi-material systems, for
example in the design of adhesive joints, thin film coatings and of composites. Failure of
these multi-layer systems often initiates at the corner where the interface intersects a
traction-free edge. The analysis of free-edge stress fields is therefore fundamental to our
understanding of the initiation and growth of free-edge cracks.

The geometrical configuration at the edge of two bonded dissimilar materials is charac­
terised by the angles 8 1 and fi2 which the traction-free surfaces of the elastic materials make
with the interface, as shown in Fig. I. For this configuration, a displacement singularity of
strength Hri (and a corresponding stress singularity of type Hr;-I) can exist at the interface­
corner; here, r is the radial distance from the corner, H is the intensity of the singularity
and I. - I is the order of the stress singularity. (We shall refer to this as the H-field, in
contrast with a crack tip K-fleld.) The H-singularity occurs only within a local region near
the interface-corner of the bi-material, and is therefore referred to as a free-edge effect. The
value of I. may be real or complex, depending upon the relative elastic properties of the
materials and upon the edge geometry (8 1 and (12), However, the intensity. H, of the
singularity depends upon the overall geometry of the strip. the material elastic properties
and upon the remote loading. The value of H characterises the intensity of the stress state
at the interface-corner.

An accurate determination of the order U - I) and the intensity. H. of the free-edge
singularity is of paramount importance in predicting the local stress state at a free-edge.
These stresses encourage the initiation and growth offree-edge cracks. Several studies have
considered the evaluation of the order of the stress singularity I. - I, for different edge
geometries and different combinations of materials (see, for example. Williams (1952),
Bogy (1971), Hein and Erdogan (1971). Theocaris (1974). and van Vroonhoven (1992)).
However, the evaluation of the intensity of the singularity. H, has received little attention.
Reedy (1990, 1993) has determined the magnitude of II for (i) a thin elastic layer bonded
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Traction-free
surfaces

Fig. I. General configuration at the free-edge of two bonded dissimilar materials.

to a rigid adherend, and (ii) for a thin elastic layer sandwiched between two rigid substrates.
Several recent experimental studies have proposed the use of H to predict the failure of
bonded materials in a manner similar to the use of conventional stress intensity factor for
predicting the onset of crack growth (Gradin, 1982; Groth, 1988; Hattori et al., 1989). A
detailed calibration of the intensity of the free edge singularity H for different specimen
geometries and material combinations is required for the effective application of an H­
based failure criterion.

In this paper we calculate the intensity H of the singularity that occurs at the interface­
corner A of a butt joint between two dissimilar but isotropic elastic strips, as shown in Fig.
2a. The length L of each strip is assumed to be much greater than the width IV, and the
remote ends are subjected to uniform tension (J. In addition we evaluate the interfacial
stress intensity factor for an edge crack of length! (0 ~ !/w ~ 0.5) at the interface between
the two materials; see Fig. 2b. Some implications of the results for the initial growth of a
free-edge crack within the singularity zone are discussed.

2. FORMULATlO'\J OF THE PROBLEM

2.1. The bi-material geometry
Consider the biomaterial geometry shown in Fig. 2a. It consists of two elastic, isotropic

and homogeneous strips bonded together to form a strip of width wand length 2L, where
L » 1\' (we take L = 20w). The strip is subjected to a remote tensile stress (J, and the strips
are taken to be sufficiently thick for plane strain conditions to prevail. The material above
the interface is termed material 1 while the material below the interface is termed material
2. For the geometry shown in Fig. 2a. the two materials are perfectly bonded along the
interface (i.e .. no interfacial crack is present). The traction-free sides of each strip makes
an angle of Ti2 with the interface at the interface-corner A, i.e .. e\ = e1 = Ti/2. The stress
field within a local region around the interface-corner A has a singularity of the form Hr)-I,

where r is the distance from A and i. - I is the order of the stress singularity.
The geometry of the biomaterial strip with an edge crack along the interface is shown

in Fig. 2b. It is supposed that a crack has initiated at the corner A and exists as an interfacial
crack of length!, subjected to a remote tensile stress (J; see Fig. 2b. The interfacial stress
intensity factor K (written in complex form as K j + iKe, where i = j"=I), and the non­
singular stress terms parallel to the crack surface (referred to as the .. T-stresses") are
evaluated as functions of the relative crack length! l\' and elastic mismatch by the finite
element method.
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Fig. 2. The bi-material geometries. (a) An uncracked bi-material strip with perfect adhesion between
the two materials. (b) A bi-material strip with an interfacial edge crack of length!. (c) A boundary

layer geometry for a short interfacial edge crack embedded within a free-edge singular field.

For the limiting case of small Iii, the interfacial crack lies within the free-edge
singularity characterised by H, and the interfacial K value is calculated in two steps as
follows. First, the intensity H for the singular field is evaluated for the uncracked strip of
finite width (Fig. 2a) via a contour integral and the finite element method. Second, the
stress intensity factor for the short interfacial crack lying within the H-field is extracted by
solving an ancillary boundary layer problem which couples the inner K-field with the outer
H-field. The boundary layer problem is solved by the finite element method and makes use
of the geometry shown in Fig. 2c. The external semi-circular boundary of the domain is
loaded by the H-field, and the interfacial stress intensity factor for the embedded crack is
extracted using a i-integral evaluation.

2.2. Material elastic parameters
Consider a biomaterial consisting of two isotropic elastic materials loaded by prescribed

surface tractions in plane strain or plane stress; Dundurs (1969) has shown that the stress
distribution in such a body depends on only two combinations of the elastic constants. The
two elastic mismatch parameters are defined for plane strain by
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III (I\e + I) - (1\1 + I )Ile
:1.=----

III (I\e + I) + (1\1 + I )Ile

{3 = III (I\e ~_I) - (1\1.-! )Ile

III (I\e + I) + (1\1 + I )Ile

(1 a)

(1 b)

where the subscripts refer to material I or 2, IlJ = E,!2( I +v), E i , and Vi denote shear
modulus, Young's modulus and Poisson's ratio for material j, respectively, and 1\/ = 3 -4vj

for plane strain. The material parameter :I. is positive when material 2 is more compliant
than material I, and is negative when material 2 is stiffer than material I. Both :I. and {3
vanish when the elastic properties of both materials are identical, and switching materials
I and 2 reverses the signs 01':1. and {3. The (:I., {3) values for typical material combinations
are concentrated along {3 = 0 and {3 = :I.!4 lines in :I. - {3 space (Suga et al., 1988). In the
current paper, we restrict our discussion to material combinations with {3 = 0 and 11 = :1./4.

2.3. Intensity H of the free-edge singularit]·
Let (r, 8) be cylindrical polar co-ordinates centred at the interface-corner A. as shown

in Fig. 2a. By using a complex variable formulation, it is shown in Appendix A that the
singular fields near the interface-corner are of the form

(J~i = Hr; If~P, 0)

u~ = Hr'g~(i., II) (2)

where (i,) == (r, 8), k( = I, 2) is the material index, andf7/ and g7 are known functions of A,
8 and of the material mismatch parameters (:I., {3) ; explicit expressions for f7/ and g7 are
given in Appendix A. We wish to evaluate H as a function of material elastic parameters
(:I., {3) and of remote loading (J for the geometry shown in Fig. 2a. The order of the singularity
;, has been determined for various corner geometries and material combinations: see, for
example, Bogy (1971) and Hein and Erdogan (1971). The values of;. for the geometry
shown in Fig. 2a are plotted in Fig. A I of Appendix A. as a function of material elastic
mismatch parameters :I. and {3. When the two materials are identical (:I. = fJ = 0) the singu­
larity vanishes at the interface-corner and I. = I (Bogy, 1971; Kelly et al.. 1992). We note
also that 1.(:1., {3) = ;,( -:I., - Ii).

The intensity H of the free-edge singularity will hereafter be referred to as the free­
edge intensity factor. H is normalised with respect to the asymptotic singular field such that
at a distance r from the interface-corner and along the interface (8 = 0), the stress com­
ponent normal to the interface, (JIJIJ, in the region dominated by the singularity is given by

(3)

where the superscripts I and 2 denote the two materials. The free-edge intensity factor H
depends, in general, upon the free-edge geometry. elastic mismatch parameters and upon
the remote loading. Dimensional considerations dictate that H is related to the geometry
and material elastic properties by

(4)

where (J is the remote stress. tv is the width of the strip and a is a dimensionless function of
the elastic parameters :I. and {3. We shall evaluate a(:I.. {3). and hence H. by a contour integral
method and the finite element method. as described in Section 3.

2.4. Stress intensities and T-stresses for an interfacial edge crack
In generaL an interfacial crack between two dissimilar isotropic elastic solids suffers a

singular stress field characterised by the complex interfacial stress intensity factor
K = K I + iKe. where i = J-=!. In order to define K we introduce the Cartesian co-ordinates
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(x, y) and cylindrical polar co-ordinates (r,O) placed at the crack tip as shown in Fig. 2b.
Then, K is defined such that at a distance r directly ahead of the crack tip, the normal stress
O',T and shear stress 0',\ are given by

0',\ + iO'"
I=Kr -I c-',

,,:2][
(5)

where the oscillatory index E depends only upon the material elastic mismatch parameter f3
via

(6)

It is clear from (5) that for t: i= 0 the stress components oscillate as the crack tip is
approached. This complicates the usual definition of mode mix at the crack tip. An approach
suggested by Rice (1988) is to define the mode mix on the basis of the ratio O'n/O'n at a
fixed distance 7 ahead of the crack tip. Accordingly, the phase angle lit is introduced where

- (O'n)tan if; =-_~ _
(J ~T r.,,-.'

Im(K/")
--------- ----

Re(K/") .
(7)

For a homogeneous solid where (0( = f3 = 0), K] and Kc can be interpreted as the classical
mode I and II stress intensity factors. As discussed by Rice (1988), the particular value
taken for 7 usually has a negligible effect on the value of the phase angle lit for realistic
values of E, Indeed for the case f3 = [; = 0, the phase angle lit is independent of the particular
choice of 7. In presenting the interfacial stress intensity solutions for both long and short
edge cracks, it is convenient to define a phase angle if; in relation to the crack length! by

Note that if; is related to lit by

Im(K!')
tan if; = ---- .

Re(K!")

(

I'
if; = tf+dn I)

(8)

(9)

In the series expansion for the interfacial crack tip stress field, the next highest order
term to the K field is given by in-plane direct stresses parallel to the crack plane. These
stresses are of magnitude T] in material I and Tc in material 2. and are referred to as the
"T-stresses'. Since the strain component B" is the same on both sides of the interface, a
direct relation exists between the T-stresses,

1-0(
T, = --- T.

- 1+ y. ]
(10)

When the cracked bi-material strip shown in Fig. 2b is loaded by a remote tensile stress
0', the stress field at the tip of the interfacial crack of length! from the free-edge is governed
by the complex stress intensity factor K and the T-stresses T] in material I and Tc in material
2. Dimensional considerations require that the stress intensity factor and the T-stresses be
related to the geometry and the applied stress (j by
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Kr = ujlb(I:'I'.y..[J) (II)

(12)

Here, b( = b l + ibJ is a complex non-dimensional function and c a real non-dimensional
function of the elastic mismatch parameters (:x, fJ), and of the relative crack length Ow. The
T-stress T2 in material 2 is related to the T-stress T1 in material I via (10). The evaluation
of these functions using the finite element method is described in Section 3.

For the case when the interfacial edge crack of length I lies within the H-dominance
zone the stress intensity factor and the T-stresses depend directly upon the magnitude of
H. A boundary layer approach is used for evaluating the coupling between the crack tip
parameters K and T and the free-edge singularity parameter H. The boundary layer
geometry shown in Fig. 2c is loaded on the semi-circular boundary by the asymptotic free­
edge displacement field characterised by H (eqn (2».

The interfacial stress intensity factor K has the dimension (stress)(length)I 2-i', while
the free-edge intensity factor H has the dimension (stress)(length)! ;. Dimensional con­
siderations require that the interfacial stress intensity factor K and the T-stress TI in material
I be related to the geometry and the free-edge intensity factor H by

Kt" = HI' ] 'd(:x.{J)

T] = HI' 11:'(:x./3).

(13)

(14)

Here d( = d l + id2 ) is a complex non-dimensional function and I:' a real non-dimensional
function of the elastic mismatch parameters :x and fi; the evaluation of these functions is
described in Section 3.

By substituting the expression (4) for the free-edge intensity factor H into (13) and
(14), the interfacial stress intensity factor K and the T-stress T] in material I for an interfacial
crack embedded within the free-edge singularity zone are given in terms of the remote
loading u, crack length ratio Ilw and of the material parameters (:x, fi) by

r-(I)" IKI" = u ! I·· a(:x, /3) 'd(ex,f3)
" ll'

(I)' 1T , = u - a(:x, {3) 'I:'(Y., fJ).
1\'

(15)

(16)

The order of the stress singularity U - I) is also a function of Y. and fJ. Recall that a and e
are real, and d is a complex non-dimensional function.

3. NUMERICAL Al\ALYSIS

The finite element method is used to evaluate the free-edge intensity factor H for the
uncracked bi-material strip (Fig. 2a), and the interfacial stress intensity factor K and the
T-stress TI in material I, for the cracked strip (Figs 2b and 2c). Numerical computations
were performed for a bi-material strip having a length of 2L = 20w. where w is the width
of the strip, and the strip is subjected to a uniform remote tensile stress u. Results are
obtained for various values of material parameters :x and f3 (= 0 and:x!4), and for values
of relative crack length til\' in the range 0.06 ,;:; 1!l1' ,;:; 0.5. First we describe the procedure
for the evaluation of the free-edge intensity factor H.

3.1. Evaluation o( thef;'l:'e-edge intensit,vfactor H
The free-edge intensity factor H is determined by the 'reciprocal work integral contour

method'. The method involves a convolution of the asymptotic field of the corner singularity
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1651

with a finite element solution. This contour integral method has been used by various
authors to obtain the stress intensities for different crack and notch geometries; see, for
example, Stern et al. (1976), Sinclair et al. (1985), and Carpenter and Byers (1987). The
method is based on Betti's reciprocal law (Sokolnikoff, 1956), and is outlined below.

Consider a closed contour C( = C 1+ C1 + C1 + C4 ) around the interface-corner A, as
shown in Fig. 3. Betti's reciprocal law can be stated as

(17)

where (i,j) == (r, 8) represent polar co-ordinates centred at the interface-corner, O"u and u,
are the free-edge singular stress and displacement fields given by eqn (2), O"U, u7 are auxiliary
fields satisfying the same boundary conditions as 0",/ and u,. nj is the outward unit normal
to C, and ds is an infinitesimal line segment of C. Integration in (17) is performed in an
anticlockwise sense around C. By appropriate choice of the auxiliary field (O"u' un. the
integral (17) can be used to determine the free-edge intensity factor H.

In the evaluation of H the auxiliary fields o"u and u7 are chosen as the free-edge singular
stress and displacement fields given by (2) with intensity H* and I. replaced by 1.* = ~ I..
The starred fields (O"u' un with I.* = -I. satisfy the same boundary conditions as those for
the unstarred fields (0",/, uJ These boundary conditions are: (1) traction-free conditions
along 8 = -11/2 and 8 = 11/2, and (ii) continuity of displacements and stress components
(0"11/), O"rO) along the interface, where (r,8) are polar coordinates centred at the interface­
corner: see Fig. 2a. The unstarred fields (0",/, u,) are obtained for the bi-material strip
geometry of Fig. 2a using the finite element method. The value of the intensity H* for the
auxiliary field is chosen such that the evaluation of (17) by the domain integration method
gives the intensity H for the elastic state of interest. A more detailed description of the
procedure for the evaluation of H is given in Appendix B. Once the value of H has been
obtained, we calculate the non-dimensional constant a('Y.,fJ) via eqn (4).

Elastic analysis of the uncracked bi-material strip of Fig. 2a has been carried out using
the finite element code ABAQUSt. The finite element mesh consists of 586 eight-noded
plane strain isoparametric. quadrilateral elements. The mesh near the interface-corner is
refined due to the presence of the singularity: a typical finite element mesh is given in Fig.
4a. The width of the strip It is taken as unity and the strip length 2L = 201l·. Only one half
of the width of the uncracked bi-material strip is analysed due to symmetry: roller boundary
conditions are applied along the mid-plane of the strip. The results for the coefficient a are
listed in Table 1 for various values of material parameters 'Y. and IJ (= 0 and 'Y.(4).

t Hibbitt. Karlsson and Sorenson. ABAQUS Users Manual. Version 5.2. HKS Inc. (1992).
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where R is the outer radius of the boundary layer.
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Tables 1- 5. Tabulated solutions of the non-dimensional constants a. h( = hi +ih,). c. d( = d l +id,) and I' as
functions of material elastic mismatch parameters Ci and fi( = 0 and Ci.4).

Table 1. a( Ci. {3)

[3=0
fi = Ci/4

Ci = 0

0.99998
0.99998

Ci = 0.2

0.89536
0.94761

Ci = 0.5

0.63182
0.75395

Ci = 0.8

0.43335
0.54718

Ci = 0.99

0.33653
0.42792

f'<ote that a( -Ci. - fi) = a(Ci.{i).

Table 2. h = hi +ih,

Ci=O Ci = 0.2 Ci = 0.5 Ci = 0.8 Ci = 0.99
! '\1' f; = 0 fi = 0 [3= CiA [3=0 fi = CiA fi = 0 fJ = CiA f; = 0 fJ = Ci:4

0.06 hi 2.0096 2.0408 2.0268 2.2001 2.1211 2.5057 2.3192 2.7057 2.5232
h, -0.0001 -0.1813 -0.1460 -0.4662 -0.3835 -0.8086 - 0.6747 - 1.1570 -0.9141

0.08 hi 2.0516 2.0749 2.0652 2.1933 2.1399 2.4175 2.2958 2.5774 2.4547
h, -0.0001 -0.1701 -0.1317 -0.4332 -0.3429 -0.7401 -0.5939 -1.0197 - 0.7923

0.10 hi 2.0967 2.1145 2.1079 2.2063 2.1699 2.3770 2.2986 2.5075 2.4290
h, -0.0001 -0.1614 -0.1208 -0.4077 -03127 -06878 -0.5358 -0.9514 - 0.7073

0.20 hi 2.4150 2.4220 2.4219 2.4564 2.4598 2.5169 2.5359 2.5967 2.6098
h, -0.0001 -0.1302 -0.0872 -0.3242 -0.2231 -0.5343 -0.3733 -0.6694 - 0.4822

0.30 hi 2.9314 2.9347 2.9376 2.9495 2.9711 2.9677 3.0366 3.0281 3.0978
h, -0.0001 -0.1038 -0.0661 -0.2580 -0 1679 -0.4264 -0.2777 -0.5899 -0.3548

0.40 hi 37287 3.7296 3.7352 3.7311 3.7702 3.7213 3.8366 3.7235 3.8935
h, -0.0001 -0.0742 - 0.0483 -0.1846 -0.1215 -0.3092 -0.1970 -0.4348 -0.2474

0.50 hi 4.9869 4.9853 4.9949 4.9719 5.0351 4.9281 5.1099 4.9981 5.1783
h, -0.0001 -0.0350 -0.0312 -0.0885 -0.0763 -0.1555 -0.1171 -0.1513 -0.1392

Note that hi (- Ci. - fi) = hdCi. fi) and h,( - Ci. - fi) = - h,(Ci. fi).

3.2. Ewluation of the inte~l"acial stress intensitl" factor and T -stresses
Both the interfacial stress intensity factor K and the T-stresses are determined by (i)

evaluating the path-independent J-integral for the elastic state of interest. followed by (ii)
evaluating the J-integral for a linear superposition of the elastic state of interest and a
suitably chosen auxiliary elastic field.

Parks' (1974) virtual crack extension method is used to evaluate the path independent
J-integral. For the evaluation of the components K j and K: of the interfacial stress intensity
factor, the auxiliary field is taken to be the singular crack tip field for an interfacial crack,
as described by Matos et al. (1989). In the evaluation of the T-stresses, the auxiliary elastic
field consist of a point force placed at the tip of the semi-infinite interfacial crack and in a
direction parallel to the crack faces. A detailed description of these methods is given by
Akisanya and Fleck (1994).

Finite element analysis is carried out using the finite element code ABAQUS. The
finite element mesh contains 1236 to 1516 elements for the case of long crack (Figs 2b and
4b) and 638 elements for the boundary layer problem (Figs 2c and 4c). In all cases eight­
noded plane strain isoparametric, quadrilateral elements are used.

The numerically obtained values for the coefficients b, c, d and e are listed in Tables
2-5. for various values of material parameters (f. and f3 (=0 and (1./4), and relative crack
length in the range 0.06 ~ (/11' ~ 0.5. The results are compared with existing solutions
(Sham. 1991) for the coefficients band c when the two materials are identical (i.e., (I. = fJ = 0)
and t /1\' ?: 0.1 : we find that our results are accurate to within about 1%.

4. RESLLTS

4.1. Zone 01" dominance of the Fee-edge singularity
The extent of the region dominated by the free-edge singularity is estimated by com­

paring the finite element solutions with the singular asymptotic solutions given by eqn (2).
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Table 3. ("(1, fJ)

1=0 1 = 0.2 1 = 0.5 1 = 0.8 1 = 0.99
(n II = 0 Ii = 0 fJ = 1:4 Ii = 0 fJ = 1A II = 0 Ii = 1A Ii = 0 fJ = 1/4

.._--- -- ._----._------- -------------- ---

0.06 - 0.5588 -0.6762 - 0.6732 -0.8988 -0.8763 - 1.1986 - 1.1199 - 1.5637 -1.3563
0.08 - 0.5535 - 0.6732 -0.6717 -0.8844 -0.8678 -1.1571 -1.0925 - 1.4455 - 1.3062
0.10 ~ 0.5521 -0.6728 -0.6722 -08756 -0.8638 - 1.1241 -1.0769 - 1.3833 -1.2765
0.20 -0.6011 -0.7191 -0.7184 -0.9155 -0.9111 - 1.1231 - 1.1100 -1.2914 -1.2809
0.30 -0.6155 -0.7494 -0.7485 -0.9574 -0.9511 - 1.1705 - 1.1546 -1.3110 -1.3451
0.40 -0.5869 -0.7200 -0.7180 -0.9275 -0.9168 -1.1455 -1.1123 -1.0155 -1.3223
0.50 -0.4336 -0.5437 -0.5417 -0.7206 -0.7016 -0.9116 -0.8523 -0.4554 -1.0734

Note that ("( ~1. -fJ) = c(1,{3)' (1-1)/(1 +1).

Table 4. d = d, + id,

1=0
d, d,

1 = 0.5
d, d,

1 = 0.8
d, d,

1 = 0.99
d, d,

fJ = 0 1.9241 -0.0001 1.9611 -0.1831 2.0957 -0.4109 2.2639 -0.5991 2.2803 -0.6468
fJ = 1:4 1.9241 -0.0001 1.9426 -0.1404 2.0343 -0.3558 2.1911 -0.5620 2.3259 -0.6793

Note that d,( -1. - Ii) = d,(1. fJ) and d,( -1. - (l) = - d,(1. fJ).

Table 5. 1'(1. (I)

-------------.._---
1 = 0

-0.5109
~0.5109

1 = 0.2

~0.6150

-0.6112

1 = 0.5

- 0.7532
- 0.7564

1 = 0.8

-0.8852
-0.8998

1 = 0.99

-0.9741
-0.9947

Note that e( -1. -fJ) = e(1,{3)' (I-1)/(I-t-:x).

The stress component (JIIII along the radial direction 8 = 43, and near the interface (8 = 1.6C
)

is plotted against the radial distance from the interface-corner r in Fig. 5, for r:t. = 0.5 and
r:t. = 0.8, and for {3 = 0 and {3 =r:t.14. Here, (r,8) are cylindrical polar co-ordinates centred
at the interface-corner as shown in Fig. 2a. The stress component (JIIO is normalised by the
applied remote tension (J while the radial distance r is normalised by the strip width w. The
asymptotic and finite element results for (JOII along 8 = 43' are in good agreement for
rlw < 0.1 and differ only by about 6% at r/w = 0.25 (see Fig. 5a). However, the asymptotic
and the finite element solutions for (JOO along 8 = 1.6 are only in agreement for r/w < 0.03.
Thus, the free-edge singularity along a radial direction away from the interface (e.g., along
8 ~ 43) dominates a significant fraction of the width of the bi-material strip considered.
This observation is qualitatively similar to that of a thin elastic layer sandwiched between
two rigid substrates where the free-edge singularity dominates a region of the order of 0.6
times the layer thickness (Reedy, 1993). The extent of the singular zone along the interface
(8 ~ 0) is in good agreement with that obtained by Bogy (1975) for an infinitely long bi­
material strip of width w, elastic mismatch parameters r:t. = -0.8, {3 = 0, and subjected to
a remote tension: the stress component (JIIII along the interface is greater than the applied
tension over the interval 0 < rlw < 0.05. where r is the radial distance from the interface
corner.

We find that the normalised stress component (JIIO within the singularity zone is a
maximum at the interface with a value which is dependent upon the material elastic
properties. This suggests that crack initiation is more likely to occur at or near the interface.
There is a significant effect of the material elastic parameter {3 on the magnitude of (JOII in
the region dominated by the free edge singularity along both 0 = 43 and e= 1.6: for a
given value of 'l., (JOII decreases with increasing {3.
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Fig. 5. Comparison of the linear elastic finite element and asymptotic singular solutions for stress

component (Joo along (a) e= 43", and (b) e= 1.6'.
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4.2. Magnitude of the free-edge intensity factor H
The magnitude of the free-edge intensity factor H is related to the applied stress (J, the

strip width wand the material elastic properties (a,f3) in the manner given by eqn (4).
The non-dimensional constants a(IY.,I3) are determined by the contour integral method as
described in Appendix A. Values for a are listed.in Table 1 and are plotted in Fig. 6a, as a
function of material parameters IY. and 13 (=0 and 1Y./4). The function a is almost symmetric
about the a = 0 line in Fig. 6a. It decreases from a value of unity in the homogeneous limit
IY. = 13 = 0 to a value of about 0.4 when lal = 1 and 1131 = 0 and a/4. We further note that a
increases with increasing 13. The shape of the a vs IY. curve plotted in Fig. 6b is qualitatively
similar to that of the A vs a plot shown in Fig. A 1. A cross-plot of a vs A is given in Fig.
6b: it reveals that the results for 13 = 0 and 13 = a/4 collapse onto a single curve to within
numerical accuracy. We conclude that a scales directly with A for all (IY., 13) considered.

The intensity factor H is a useful measure of the initiation strength of a joint provided
any region of inelasticity is embedded within the H-field. For any particular material system,
the critical value of H (say H erit) can be measured by experiments using the calibration (4).
The use of an H-based failure criterion is justified provided the inelastic damage zone at
the free-edge is contained within the asymptotic singular field. Consider, for example, the
common case of a butt joint where two different elastic solids 1 and 2 are bonded together
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Fig. 6. The non-dimensional constant a as a function of (a) the material elastic mismatch parameters

~ and 13, and (b) the order of the stress singularity 1- i ..

by a thin layer of a third elastic solid (material 3). When the layer thickness is much less
than the width H' of the panel, the presence of the sandwich layer can be neglected in the
definition of H, and H is defined on the basis of materials I and 2. The physical idea is
that the sandwich layer finds itself embedded within an outer H-field associated with the
adherends; provided failure occurs within the zone of H-dominance, the parameter H is a
valid parameter for characterising the fracture strength of the structure.

4.3. Interfacial stress intensity factor
The non-dimensional real and imaginary components of the complex interfacial

stress intensity factor defined by (\ 1) and (\ 3) are plotted in Figs 7 and 8, respectively.
Recall that for the homogeneous case K j = Re(KI lf

) = 1.120'Jnt = 1.9850'JI and
K2 '= Im(Kt i

') = O. Consequently, results for K in Figs 7 and 8 have been normalised by
O'JI. The stress intensity factor values shown for lilt' in the interval 10- 5 ~ tlH' ~ 10- 3

are the asymptotic results for a crack embedded within the free-edge singularity zone (see
Fig. 2c); results for lilt':;::' 0.06 correspond to a long interfacial crack (see Fig. 2b) and are
determined by a finite element analysis of the cracked strip shown in Fig. 2b. The solutions
of Sham (\ 991) for the homogeneous solid are included in Fig. 7a for comparison; the
present results are accurate to within about 1%.

There is a significant {3-effect on both the real and the imaginary components of the
stress intensity factor in the region dominated by the singularity; the effect diminishes far
away from the free-edge singularity zone. The real component of the stress intensity factor
Re(Kr) is positive while the imaginary component Im(Kr) is negative for all combinations
of materials considered. We note in passing that the real component Re(Kt") is symmetric
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Fig. 7. The effect of elasllc mismatch parameters (1, [i) and relativ~crack length 1 1\ upon the real

component of the interfacial stress mtensity factor Re(Kl"j ", I. (a) [i = 0, and (b) [i = 1.4.

while the imaginary component Im(Kf") is anti-symmetric with respect to the sign of the
material parameters (ex, {».

It is evident from Figs 7 and 8 that the interfacial stress intensity factor for short crack
lengths (f /1\' < 0.1) is significantly amplified by the presence of the free edge singularity.
The magnitude of the normalised stress intensity factor decreases with increasing crack
length within the singularity region: the effect of the singularity on the stress intensity
factor diminishes as the crack length increases. In Fig. 7 the real component of the stress
intensity factor Re(K!") collapses to almost a single curve for all (x, fJ) considered when
the crack is sufficiently long (I II > 0.1).

4.4. The interracial T-stres.\
Figure 9 shows the normalised T-stress T[/(J in material I (i.e., the material above the

interface) due to remote tensile loading (J, as a function of relative crack length! /II. The
corresponding normalised T-stress T~!(J in material 2 are obtained via eqn (10) from which
it can be shown that T[ ( - x, ~ fJ) = T[ (x, f3) • (I - x)( I + x). We observe that T[ is negative
for all material combinations considered. The magnitude of T[ decreases with increasing
crack length for a crack that lies with the singularity zone (Fig. 9) : it remains fairly constant
for a crack whose tip is outside the singularity zone, and decreases rapidly as the crack tip
approaches the mid-plane of the bi-material strip (i.e., as!m ----> 0.5), see Fig. 9. There is a
significant {3-effect on the magnitude of T[ for short edge cracks: the effect decreases with
increasing crack length and with decreasing value of x, A comparison of the solutions for
x = fJ = awith those of Sham (1991) show that our results are accurate to within 0.5%.
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Fig. 9. The effect of elastic mismatch parameters (:I. fl) and relative crack length 1,\1 upon the T­

stress in material L T,.

The magnitude and sign of the T-stress affect kinking of an interfacial crack out of the
interface (He ct af.. 1991: Akisanya and Fleck, 1994). A positive value of T-stress both
encourages kinking of an interfacial crack and causes the kinked crack to grow unstably
under a fixed remote loading. In addition. the subseq uent trajectory of the kink is expected
to diverge from the interface if the T-stress is positive (Cotterell and Rice, 1980). A negative
value of the T-stress has the following effects: (i) it stabilises an interfacial crack against
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kinking, (ii) it may cause a kinked crack to arrest, and (iii) crack growth from an initial
kink is expected to converge towards the interface,

4.5. Strain energy release rate and phase angle
The normalised strain energy release rate E*G, UC\I' is given by

(l8a)

for a crack within the free-edge singularity zone, and by

(l8b)

for a crack whose tip is outside the singularity region. Here, E* =: (I + ex);(1- If)Ec!(I-I'~)

where Ec and I'c are the Young's modulus and the Poisson's ratio of material 2 below the
interface. The corresponding phase angle of loading at the crack tip lj; defined by (8) is
obtained by using eqns (13) or (15). Once the calibration functions alex. {)), b(! /\1'. ex. f3) and
d('Y.. f3) have been deduced from the finite element analysis, the quantities G, and lj; are
known for any prescribed remote loading u and strip width ll'. Recall that the coefficient a

is real. while coefficients band d are complex functions: the values of these coefficients are
given in Tables I. 2 and 4. respectively.

Results for E*G,/uc\I' and lj; are given in Fig. 10. Interfacial toughness data are usually
presented in the GJ -lj; plane: it is therefore instructive to display our results by taking
E*Gi/uc\I' and lj; as axes in Fig. 10. Each curve is for a prescribed ('Y..13) value and is a
trajectory of Ill' in the range 10- 4 to 0.5. The dashed lines correspond to the solutions for
a crack embedded within the singularity zone,

The normalised strain energy release rate E*GJuc\\, increases monotonically from zero
as the crack length is increased with little attendant change in the phase angle lj;. This
suggests that interfacial crack growth from the free edge is unstable under fixed remote
loading. The effect of the material elastic mismatch parameter Ii upon the values of E*GducIl'
and lj; is minor. Also. the effect of the material mismatch parameter 'Y. upon the magnitude
of E*G,/(Jc1l' is small for! ll' ~ 0.1.

5, CO;\iCLLDI'K; REMARKS

A singularity of the type Hr' I exists at the free-edge of a butt joint between two
dissimilar elastic solids under remote tension, In this paper we have presented a finite
element analysis for the evaluation of the intensity H and the order of the stress singularity
i, - I. The intensity H is evaluated by a contour integral method. The singular zone along
a radial direction of Ii ~ 45 from the interface extends 10 a distance of about 0.1\1' from
the interface-corner. where \\' is the width of the bi-material strip. However. the zone of
dominance of the free-edge singularity near the interface ({) ~ 0) is more localised. extending
to a radial distance of about r = 0.03\1' from the interface corner. It is expected that H
provides a useful correlating parameter for fracture initiation at the free-edge of the butt­
joint.

In the finite element evaluation of the free-edge intensity factor H for the uncracked
bi-material strip we have taken the length L to equal 2011'. where \\' is the width of the strip.
Numerical experimentation showed that this ratio of L\\' is sufficiently large for the results
to be independent of L: the numerical results pertain to the case of a long strip. with \\' as
the only length-scale in the problem,

A calibration of the interfacial stress intensity factor K and the T-stress is given for a
crack lying within the singularity region and also for a crack whose tip is outside the
singularity zone. There is a significant effect of the H-singularity field on the magnitude of
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Fig. 10. The effect of elastic mismatch parameters (:x. Ii) and relative crack length 1,1' upon the non­
dimensional energy release rate E*G,·rr',,· and the phase angle VI = arctan[lm(KI"):Re(KI")]. (a)

f3 = O. and (b) Ii = :x4. The arrows indicate the direction of increasing relative crack length I,,·.

the stress intensity factor and upon the T-stress for the crack. The energy release rate for
the interfacial edge crack increases monotonically with crack extension: the crack is unstable
under fixed load.
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APPE)JDIX A

Thc ciqcl/ prohlclII
In this appendix we derive the free-edge singular stress and displacement fields for the bi-material geometry

shown in Fig. 2a. Consider a bi-material strip of width \\ and length 2L (L » \\'). subjected to a uniform remote
tensile stress rr. as shown in Fig. 2a. We assume that the two materials are perfectly bonded at the interface and
that plane strain conditions apply. The corner geometry is such that the traction-free surface of both materials
make an angle of n2 with the interface. The point where the interface meets the traction-free surface is referred
to as the interface-corner: this point is denoted by A in Fig. 2a. The materials above and below the interface are
referred to as materials I and 2. respectively. The two Dundurs (1969) elastic mismatch parameters 7. and Ii which
govern the plane strain deformation of the bi-material are defined by (I). Let (V.l·) and (1'.0) be rectangular and
cylindrical polar co-ordinates centred at the interface-corner as shown in Fig. 2a. We describe bell)\', a procedure
to determine the singular stress and displacement fields near the interface-corner A.

For the geometry shown in Fig. 2a. the stresses and displacements in material III (Ill = 1.2) around the
interface corner in the absencc of body forces can be expressed in terms of two complex potentials (]J", and Q", by
(Muskhelishvili.1953)

rr':'+irr';', = &;"(."i+(]J,,,I:)--:&;;,i.") Q,,(.")

(AI)
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Here, ~ = .Y + iy = r e'" (i' = - I: e'" = cos (J + i sin II) is the complex co-ordinate, p", is the shear modulus,
K", '= 3 -4\'", for plane strain and lJ", is Poisson's ratio for material m. The overbar denotes the complex conjugate
and the n denote differentiation with respect to ~. The stresses and displacements in polar co-ordinates are
obtained from (A I) by transformation as

<T:"+i<T~:, = $;"(':)+<1>;,,(~)-':$;:,I':)-~ '.:{1;,,(':)

u~' + iu;;' = (2/l",) 'e '''[K",<1>(~) - ~$:"I':) -Q",(':)]. (A2)

Following England (1971), Stern el al. (1976) and Carpenter and Byers (1987), we assume the complex
functions have the following asymptotic form as ~ --> 0,

<1>, = A~', 0, = B~' for material I

<1>, = C~', 0, = D~' for material 2 (A3)

where A (= A, + iA,), B( = B, - iB,). CI = C, + iC,) and D( = D, + iD,) are assumed Lo be complex constants. Bogy
(1971) and Kelly er al. (1992) have shown that i. is real for the free-edge geometry shown in Fig. 2a.

We seek the free-edge stress and displacement fields that satisfy the following boundary conditions:

u,' + iu,\ = II; + iu,~ along Ii = 0

u,i - i<T,'" ~ 0 along II ~ n 2

uli - iU;'1 = 0 along II = - n 2

where superscripts I and 2 denote the material index. Substitullon or IA3) and (A4) into IA2) gives

A+iA+B-C--i.C-15 = 0

K, A -i..4 - B-· I'IK,C -i.e - 15) = 0

(A4)

(A5)

(A6)

(A7)

(A8)

where I' = 11,11,.
By considering the real and imaginary parts ofeqns (A5) (AS), ",e obtain eight homogeneous linear equations

in the eight unknown coefficients A,,,, B"" C" D", (m = L 2). A non-trivial solution to the equations exist only if
the determinant of the coefficient matrix vanishes. This occurs when the eigenvalue i. satisfies the characteristic
equation

16(1' - I)' [i.' -sin' (i.n 2)]' -4[I'IK, + I) - IK, + I I] [i.' - sin"(i.n 2)J

+ 16(1' - I) sin'(i.n2}[p(K, + I) - (K, + I )][i' - sIn'(i.n 21] + [I'(K, + I) + (K, + I)]' sin'li.n) = 0 (A9)

We seek the smallest value of i. in the interval 0 < i. :;; I as the solution to the characteristic eqn (A9). The roots
of (A9) with 0 < i. :;; I give unbounded stresses and vanishing displacements as the interface-corner is approached.

Bogy (1971) has previously determined the order of the singularity for two bonded elastic wedges of different
materials and obtained a characteristic equation that is equivalent to (A9) when the wedge angles are identical to
those of Fig. 2a: i.e., II, = 0, = n 2. The value of i. is obtained by solving (A9) numerically for various values of
material elastic mismatch parameters ~ and Ii: the results are plotted in Fig. A I for all possible ~ and for f3 = 0
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Fig. A I. The order of the displacement singularity i. at the free-edge for the uncracked bi-material
geometry shown in Fig. 2(a).
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and Ii = :x4. In the limit:x = Ii = 0 the only possible solutions to (A9) arc integer values of i.: no singularity exists
at the interface-corner for :x = f3 = 0 as expected. Further. there is no stress singularity at the interface-corner of
the geometry shown in Fig. 2a (i.e .. ;. = I) for material combinations with fJ = :x.2 (see Bogy (1971) and Kelly el

af. (1992»). We note that ;.(:x./i) = ;.(-:x. -Ii). and that if i. is an eigenvalue for a given (:x, {i) pair, then so is -i.
for the same value of (:x. (J).

Once the value of i. has been obtained from eqn (A9). we can express seven of the eight unknown constants
in terms of the eighth, say AI. by substituting the value of;. into eqns (AS) (A8). The unknown constant Al is
normalised such that

ann(ll = 0) = Hr' I. (AIO)

By solving for the coefficients ,4,. BI •••• , D, in eqns (AS) (AS) for known value of I. in terms of AI' and applying
the definition (AIO), it can be shown that H is related to the coefficients A I. A". " D, by

IAl
0

A, 0

, B
I Y,::,

B, \41 \-1:' f\'I/ H

C.

r::
x,: <[r,)

C, x h -

DI \-1
y.- J

D. .Y'I .\ ... ::'

or

(QlJ
XI, ,

'ylj{
'IQ2J= X~ (:' I'

lAlla)

(Allb)

where

B 'I

"

XXI

and

:Q2: = :e l C D, D::'

X.<I = I.-COS/.n.

.\:" = sin hr

.\..() = sin ;.J[

.\42 = i.+cos/.Tt

2(II-I)(i.+sm'(i.n2»+h: 1+ I

p(l +h:.)

III - I ) sin i.n
x" = p(l+h:,)

(p-I) sini.n

1'( I + h',)

2111-I)(sin'Un:2)-i,)~h:1T I
.\6' =-- ---

- 1'(1 +h:,)

[2(1' - IHi. + sin: (i.n/2») + (h: I ~ I )j(i. - cos i.n) + IfJ - I) sin' Un)

Jj( 1+ h'J

[3i.(p-I)-h:, -II] sini,n
x-,= 11(1-1<,)

[3i.(Jj-I)+I<, +IJ] sini,n

1, (1 +1<,)

[2(II:-IHsin'(in 2)+1.)+(1<1 + 1)]U+cosin) (I'-I)sin'(i.n)
x~: =

p(l +1<,)

[Jj(I<, + I) ~ (I<, + I)] -4i.(II-I)

4i.[(1 +1<, )(i+sin'Un 2))-(II-I)(i' -"-sin' (i.n 2))]

(AI2)
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2(1'-1)(i.' +2i.sin'(i.n.2)+sin'(in 2))-[1'('" + 1)- (/{, + I j](i. +sin'(i.n 2»
\', = - ._----

. ' 2isin(i.n)[(1 +/{I)(i.+sin'(i.rr2))-(/1 1)(i.'+sin'(i.n;2))]
(AI3)

In the above equations, the superscript T denotes the transpose.
The stresses and displacements in the region dominated by the singularity can now be determined in terms

of the unknown free-edge intensity factor. H. by substituting eqns (A3) and (A II) into eqn (A2). The stresses and
the displacements. which are the eigenfunctions corresponding to the eigenvalue i .. are given by

u;" = Hr'.i/" (i.. 0) (AI4)

where m( = 1.2) denotes the material number. (i.jl == (r. 0) represents the cylindrical polar co-ordinates centred at
the interface-corner. and the functions/,j and .II, are defined hek,,\.

Define a matrix[F: b)

:F: = [.11,' .II,', f,', /,'", 1,1" .'r {/,~ I,',

where the superscripts I and 2 again denote the material indices. Then.

"i () \?' I, Iy }:F ~
'; . -I

() M I?'~ /"
~ . -i

where

ell] I (AI5)

(A16)

(h' l i.) cos(i. - 1)0 (i-/{,)sin(i.-I)O cos(i.-I)O sin(i.+ 1)0
------

21'1 2/1 21/1 2// 1

(/{, + i.) sin(i. -1)0 (h'l +i)cos(i-I)O sin(i.+ 1)0 cos(i. + 1)0
----

[N] - 2/1 1 '2111 2/1 1 21'1

i.(3-i)cos(i-I)0 i(i-3)sin(i-I)0 -icos(i.+ 1)0 i sin(i.+ 1)0

i.(i. + I) cos(i - 1)0 i.(i. + I) sin( 1- i)O i. cos(i + 1)0 - i. sin(i. + I

i.(i. - I) sin(i - I){} i(i.-I)cos(i-I)O i sin(i. + 1)0 i. cos(i. + I){}

(AI7)

The matrix [M] is obtained by replacing /{, by /{, and /1, by /" in the definition of [N]. The unknown parameter H
is determined for the specitlc geometry and applied loading as descrihed below in Appendix B.

APPE"JDIX B

lflleqral eon lour melhodjor eralualil1g IheFee-edge imemitrlador H
In this appendix we describe the method used to evaluate the free-edge intensity factor H for the bi-material

geometry shown in Fig. 2a. The bi-material strip is suhjected to a remote stress a. and the stress-free surfaces of
both materials intersect the interface at an angle of n/2 at the interface-corner A (see Fig. 2a). Let (r. 0) be polar
co-ordinates centred at the interface-corner A. We assume that plane strain conditions apply, and describe below
the procedure to evaluate the intensity H of the singularity that develops near the interface-corner A due to the
remote load a.

The stress and displacement fields around the interface-corner in material m (m = 1.2) are given by (AI4).
The free-edge intensity factory lJ is determined by the reciprocal work integral contour method. This method has
been used by various authors to obtain the stress intensities for different crack and notch geometries: see. for
example. Stern 1'1 al. (1976). Sinclair el al. (1985). and Carpenter and Byers (1987). The reciprocal work integral
contour method is based on the reciprocal theorem (Sokolnikoff, 1956).

Consider a closed contour C( = c, + C, + C + C) around the interface-corner. as shown in Fig. 3. The
reciprocal theorem can be stated as

f,(a,Ii.*-- ":';Ii, In, d.l = 0 (BI)

where (i,j) == (r.O) represent the polar co-ordinates centred at the interface-corner. (J,; and u, are the free-edge
singular stress and displacement fields given by eqn (A 14). ,,:';. u.* are auxiliary fields satisfying the same tleld
equations as au and u, (i.e .. eqn (A4)). 11/ are the components of a unit outward normal to C. and ds is an
infinitesimal line segment of C. The integration in (B I) is performed in an anticlockwise sense around C. By
suitable choice of the auxiliary tleld (al;. Ii,'). the evaluation of the integral (BI) can be used to determine the free­
edge intensity factor If.

To proceed we consider the auxiliary field
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Table Bl. Tabulated solutions for the integral h as a function of material mismatch parameters Y. and fJ
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fJ=O
{3 = Y. 4

Y. = 0 Y. = 0.2 x = 0.5 x = 0.8 Y. = 0.99
---._- ---- -- --

- 573.5962 -0.1401 -0.0809 -0.1759 -3.6819
- 573.5962 -0.2391 -0.0882 -0.1380 - 2.4871

Note that h( - Y.. - f3) = h(y.. fll.

where 111 ( = 1.2) denotes the material index.

(B2)

!~"'(i*.II) =1:';( - i.. III

and

V~,l = v~,,: = H*r'- I (alongll = 0).

(B3a)

(B3b)

H* is the intensity of the auxiliary field.
As discussed in Appendix A. if i. is an eigenvalue for a given pair of materials such that the eigenvectors

(stresses and displacements) satisfy the field equations (A4). then i* = -i. is also an eigenvalue for the same
material pair. As portions C l and C of the closed contour C are traction-free (see Fig. 3).

on these surfaces. Therefore eqn (B I) becomes

I Iv"u~-v~u,ll1lds = -I' (v"u~-v>,)ILds.
",.-( I ,,(

(B4)

(B5)

The integral on the left hand Side of eqn IB5) (i.e .. along C) is evaluated by substituting the asymptotic field
eqn (AI4) for the unstarred field Iv". u,). and the asymptotic field given by eqn (B2) for the auxiliary starred field
((J~.un. Thus. we have

where

1= r (v"u7--v~u,)I1,ds=hIlfI*
• ( I

h = j' Lf'IU.lJ)q,(-i.II)-f,(-i.lI)q,li.II)]dll.
(,

IB6)

(B7)

The functions!;; and g, are defined in Appendix A. Integration of (B7) is performed numerically to obtain the
value of h. In the evaluation of h. the contour C. is divided into 40 equal angular segments and the integration is
performed using a ten point Gaussian quadrature integration formula within each segment: the numerically
obtained values of h are given in Table BI.

Integration of the right hand side of eqn (B5) along C is performed by the domain integration method (see
Li 1'1 al. (1985)). whereby the line integral is converted to an area integral via Gauss's theorem. For evaluation of
the integral along C,. the stresses and displacements (v", u,) are obtained by the finite element method at the
integration points of all the elements within a chosen domain of integration. However. the stresses and the
displacements for the auxiliary field (v~. un at the integration points of these elements are determined from eqn
(B2). The intensity of the auxiliary field fI* is chosen as H* = I h. where h is given by (B7). Thus. from eqns (B5)
and (B6). the value of the integration along C, becomes

H = - r 1(J"II*-(J~u,)Il, ds.
..'(

(B8)

Once H has been determined using the above procedure. the value of the non-dimensional constant a(y..{3) is
obtained via eqn (4). The calculated values of the non-dimensional constant a(y.. fJ) are independent of the path
chosen for the integration. For example. values for a(0.8. 0.2) differ by less than 0.01 % for eight different domains
of integration. with inner radius ranging from I' = 0.00311' to I' = 0.004\\' and outer radius ranging from I' = 0.06\\'
to I' = 0.065\\'.


